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We study the following paradox associated with networks growing according to superlinear preferential
attachment: superlinear preference cannot produce scale-free networks in the thermodynamic limit, but there
are superlinearly growing network models that perfectly match the structure of some real scale-free networks,
such as the Internet. We obtain an analytic solution, supported by extensive simulations, for the degree
distribution in superlinearly growing networks with arbitrary average degree, and confirm that in the true
thermodynamic limit these networks are indeed degenerate, i.e., almost all nodes have low degrees. We then
show that superlinear growth has vast preasymptotic regimes whose depths depend both on the average degree
in the network and on how superlinear the preference kernel is. We demonstrate that a superlinearly growing
network model can reproduce, in its preasymptotic regime, the structure of a real network, if the model
captures some sufficiently strong structural constraints—rich-club connectivity, for example. These findings
suggest that real scale-free networks of finite size may exist in pre-asymptotic regimes of network evolution

processes that lead to degenerate network formations in the thermodynamic limit.
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I. INTRODUCTION

Models of complex networks can be roughly split into
two classes: static and growth models. Static models, such as
classical random graphs [1] and their generalizations [2—4],
generate a whole network at once, trying to directly repro-
duce some properties observed in real network snapshots.
Growth models, e.g., preferential attachment [5], construct
networks by adding a node at a time, attempting to provide
some insight into the laws governing network evolution.
Compared to static models, it is generally more difficult to
closely match observed network properties with growth
models, because in this case one usually has less direct con-
trol over the properties of modeled networks.

The first growth model that matched the observed Internet
topology surprisingly well, across a wide spectrum of net-
work properties, was the positive-feedback preference (PFP)
model by Zhou and Mondragén [6]. In the model, at each
time step, one node is added to the network, and connected
to the existing nodes by two or three links, choosing different
link placement options with different probabilities. The most
important property of the model is that the probability to
connect a new node to the existing nodes of degree k is a
superlinear function of k. Although there are many other
models of the Internet evolution, e.g., [7-9], the PFP model
stands apart as it gives rise to the following unresolved para-
dox. On the one hand the model matches perfectly the ob-
served Internet, while on the other hand, since it is explicitly
based on preferential attachment with a superlinear prefer-
ence kernel, it cannot produce, in the thermodynamic limit,
any scale-free networks [10], including the Internet.

Here we resolve this paradox by showing that superlinear
preferential attachment can have vast preasymptotic regimes.
Specifically, we first find an analytic asymptotic solution for
superlinearly growing networks with arbitrary average de-
gree, confirming that the asymptotic regime is indeed
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degenerate—regardless of the average degree, only a finite
number of nodes have high degrees (Sec. II). However, in
Sec. III, we show that, if the preference kernel is not too
superlinear and if the average degree is not too low, then this
asymptotic regime becomes noticeable only at network sizes
that are orders of magnitudes larger than the size of any real
network, including the Internet. We thus half-resolve the
paradox by showing that the PFP model can, in fact, match
the Internet. Section IV resolves the other half, by explaining
why the model does so: its design implicitly reproduces the
degree correlations in the Internet, which are known to de-
fine almost all important topological properties, except clus-
tering [3,4]. We conclude in Sec. V with an outline of our
findings and their implications.

II. ASYMPTOTIC DEGREE DISTRIBUTION

In this section we derive the analytic solution for the de-
gree distribution of superlinearly growing networks (SLGNs)
in the thermodynamic limit. We begin by recalling what is
known for networks grown by adding a single link per node

(the average degree k=2), and then generalize to the case
with multiple links.

A. Single link per node

The case when a new node attaches to exactly one exist-
ing target (or host) node is well studied [10-12]. Let the
probability that the new node selects a host node of degree k
be

N
k12 (k)°, (1)
j=1

where the summation is over all N existing nodes and the k;’s
are their degrees. Then the asymptotic degree distribution is
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a stretched exponential for sublinearly growing networks
(6<1) and a power law for linearly growing networks (&
=1). Superlinearly growing networks with 6> 1 are asymp-
totically star graphs.

Specifically, if §>2, then the number of nodes with de-
gree k> 1 remains finite in the thermodynamic limit N — o,
meaning that almost all nodes have degree 1, N(N)=N. If
3/2<§<2, then the number N,(N) of nodes with degree 2
(degree-2 nodes) grows as N>~°, while the number of nodes
with degree k>2 remains finite. If 4/3<<5<3/2, then
N;(N) ~N32% and the number of nodes with degree k>3 is
finite. In other words, there is an infinite series of “phase
transitions” at critical values J,=1+1/p, where p
=1,2,3,..., and the degree distribution in SLGNs with &
lying between these critical values, 8, <8<4,_; (§==), is
given by

NW=DI=9if | <k < p,
Ny/N ~ ()

1/N otherwise.

In what follows we also consider the extremal growth
rule, which formally corresponds to the d—cc limit, and
specifies that a new node attaches to the existing node with
the maximum degree. If there are several nodes with the
same maximum degree, then the host node is randomly se-
lected among them. SLGNs grown according to this rule stay
stars throughout their evolution, assuming they are stars at
the beginning. If a SLGN is not initially a star, then extremal
growth evolves it to almost a star, with all new nodes attach-
ing to a maximum-degree node in the initial graph.

Adding one link per node results in growing trees, which
are not good models of real complex networks, which all
have strong clustering. But even if we are not concerned with
the models’ realism, there is another reason to consider
SLGNs with multiple links added per new node.

While for sublinearly growing networks, adding more
than one link should not qualitatively change the degree dis-
tribution, this modification may have a more prominent ef-
fect on the degree distributions in superlinearly growing net-
works. Indeed, the more links per node we add in SLGNs
with a finite &, the stronger the deviations from stars we
obviously expect to observe. In view of the PFP model para-
dox, one might even start suspecting that multiple links may
resurrect power laws. We thus have to exercise more care in
dealing with multiple-link SLGNs. In what follows, we first
consider them under the extremal growth rule, and then re-
move this restriction.

B. Multiple links per node: Extremal growth

We denote by m the number of links added per new node.
The PFP model uses a superposition of the m=2 and 3 cases,
and a combination of the following two link placement op-
tions: place a link either between the new and host nodes, or
between the host and another existing node, called the peer
node. Links are always placed such that the subgraph in-
duced by the new links is connected and contains the new
node, so that the network stays connected at each time step.
For concreteness, we shall assume that m is a fixed positive
integer, and consider cases with different m separately. An-
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FIG. 1. Link placement options for two links. (a) Two hosts and
(b) one host.

other important restriction is that we construct simple graphs,
i.e., self-loops and multiple links between the same two
nodes are not allowed.

We first focus on the case with m=2. In this case we have
only two options to place two links (see Fig. 1): place both
links between the new and host nodes, or place one link
between the new and host nodes, and place another link be-
tween the host and peer nodes. Both options, or any super-
position of them, produce the same result. Let the initial
network be two disconnected nodes. Adding the third node
according to the extremal growth rule creates a star graph
with three nodes. We shall represent our graphs by their de-
gree sequences (kq, ...,ky). The degree sequence representa-
tion turns out to define, up to an isomorphism, the graphs
grown according to our extremal growth rule. The star graph
after the first step is (2, 1, 1) in this representation. Applying
the extremal growth rule to add the fourth node, we obtain
(3, 2, 2, 1), and then (4, 3, 2, 2, 1), (5, 4, 2, 2, 2, 1), and
generally

(N=1,N-2,2,....,2,1)
kﬂ__J
N-3 (3)

We prove (3) by induction. We already checked its valid-
ity for small N. Assuming that (3) holds for some N>4, we
establish it for N+ 1. If we place the two links according to
the first option, shown in Fig. 1(a), then the new node at-
taches to the nodes with degrees N—1 and N—2. Thus degree
N-1—N and N-2+>N-1, the new node acquires degree 2,
other degrees do not change, and the new graph has indeed
the same structure (3). If we use the other link placement
option shown in Fig. 1(b), we must choose the node of de-
gree N—2 as the host node. We cannot attach the new node to
the node of degree N—1 because this latter node is already
connected to all other nodes, and therefore we cannot add the
second link between this hub node and any peer node. Se-
lecting the node of degree N—2 as the host, we notice that it
is connected to all other nodes, except the degree-1 node.
Therefore this latter node is the only choice for the peer
node. Hence N-2+—N and 1~2, the new node acquires
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FIG. 2. Open 2-book (8,7,2,2,2,2,2,2,1).

degree 1, and other degrees do not change. Thus the new
graph has the same structure (3).

We shall call the graphs series (3) the open 2-books. The
justification for this name is as follows. The link between the
two nodes of highest degrees, denoted by A and B, is the
binding of an open book. Each degree-2 node is connected to
A and B, and the resulting triangle is a page. Thus, an open
2-book contains N—-3 triangular pages. Finally, the link be-
tween the highest-degree node A and the dangling degree-1
node is a built-in bookmark. The open 2-book graph with
N=9 nodes is shown in Fig. 2.

Note that we can call a star an open 1-book. It does not
have bookmarks, its binding is the hub node, and its N—1
pages are all the links.

We now move to the case with three links added per new
node, m=3. Generalizing the link placement options for two
links, there are four options for placing three links, shown in
Fig. 3. Choosing the first option with three host nodes [Fig.
3(a)], the application of the extremal growth rule to the ini-
tial graph (0, 0, 0) yields the graph series (3, 1, 1, 1), (4, 3, 2,
2,1),(5,4,3,3,2,1),(6,5,4,3,3,2, 1), (7,6, 5, 3, 3, 3, 2,
1), and generally

(N-1,N-2,N-3,3,...,3,2,1)
203
N-5 (4)

Using the same logic as in the m=2 case, one can prove that
the extremal growth indeed produces (4). The link placement
option in Fig. 3(c) results in exactly the same graph series.
Placing links as in Fig. 3(d), we obtain almost the same
graph series, except that the first graph is (2, 2, 1, 1). The
option in Fig. 3(b) leads to a different graph series, but al-
most all nodes still have degree 3.

We call the graph series (4) open 3-books. The binding is
the triangle ABC connecting the three nodes A, B, and C of
highest degrees N—1, N-2, and N-3. Each page is a tetra-
hedron ABCD, where D is one of the N—5 degree-3 nodes.
Thus, an open 3-book has N-5 tetrahedral pages. It also has
two bookmarks: triangle ABE and link AF, where E and F
are the nodes of degrees 2 and 1.

Generalizing to an arbitrary m, we notice that there are
combinatorially many possibilities to place m links. In gen-
eral, they lead to different graph series. For concreteness, in
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FIG. 3. Link placement options for three links. (a) Three and (b)
two hosts; (c),(d) one host.

the rest of this paper we focus on the simplest option with no
peer nodes and m hosts, i.e., the generalization of Figs. 1(a)
and 3(a). In this case, if N is sufficiently large, i.e., N>2m,
then the resulting graphs are

(N=-1,...,N-mm, ..., mm—1,...,1).
m,...,m
N-2m+1 (5)

These graphs are open m-books. If we imagine them placed
in an (m+ 1)-dimensional ambient space, then they contain
(1) one two-codimensional binding, i.e., the (m—1)-simplex
Ay---A,, composed of the m highest-degree nodes; (2) N
—-2m+1 one-codimensional pages, i.e., m-simplices
A-++A,D, where D is one of the N—2m+ 1 degree-m nodes;
(3) m—1 bookmarks of codimensions 2,3,...,m, ie., (m
—1)-, (m-2)-,..., and 1-simplices (one simplex of each di-
mension), composed of links interconnecting highest-degree
nodes and nodes of degrees k<<m.

The notion of an open book appears in mathematics [13],
where it finds various applications, e.g., as a tool to establish
connections between contact geometry and topology. In its
simplest definition, an open book is a fibration of a manifold
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by a collection of one-codimensional submanifolds (pages),
joined along a two-codimensional submanifold (binding).
Open books with bookmarks (formal definitions are obvious)
seem natural, and perhaps they will find applications, too.

C. Removing the extremal growth restriction

In this section we outline the logic behind removing the
extremal growth condition. (A more detailed exposition is
presented in the Appendix.) We assume that & has a finite
value. First, we estimate the probability that a SLGN remains
an open book. We then characterize the deviations from the
open book structure. For clarity, we consider the simplest
case with m=2 and the first link placement option in Fig.
1(a).

Consider a network of large size j, so that j=j—1
~j-2=j-3, and suppose that it is an open 2-book (3).
Avoiding multiple links between the same pair of nodes, the
probability P;_,;,; that after adding one node the network
preserves its open book structure is approximately

j°+j° j°

FO+ 04 x 2% o4 jx 2%

(6)

Pjojir =

Indeed, the first factor is the probability that one of the two
nodes of degree =j is selected as the first host, while the
second factor is the probability that the other such node is
selected as the second host, in which case the network pre-
serves its approximate open book structure. Using (6) we
estimate the probability Py that upon reaching size N the
network is still an open 2-book,

N

po~Tl 1 1
N 1+ ) 1+ 2(215) !

finite in the limit N — o if §> 2,
N if 5=2, o
_ 3 x 251
AT P
2-8

We thus see that if ¢ is sufficiently large, viz., 6>2, then
there is a finite probability that the network preserves its
open 2-book structure throughout the entire evolution. This
observation implies that, even if it is not an open book, the
distortion of the open book structure is finite, e.g., a finite
number of nodes have degree k> 2, degrees of nodes A and
B in Fig. 2 are correspondingly lower, etc.

However, if =<2, the network is not an open book with
high probability. But even though the exact open book struc-
ture is almost surely destroyed, the distortion is still asymp-
totically small and admits analytic estimates. Indeed, let us
first estimate the number N;(N) of degree-3 nodes in an
N-sized SLGN with m=2 and §=<2. This number grows if,
instead of connecting to the highest-degree node with prob-
ability Py_n,; in Eq. (6), the new node selects the other
option and connects to a degree-2 node with probability 1
—Pnn+1- Therefore
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dNs _

2 51
AN 1= Pryoye = 3(‘) , (8)

N

where we have neglected loss terms describing the decrease
of the number of degree-3 nodes due to new nodes connect-
ing to them and changing their degrees to 4 or 5. These loss
terms, as well as corrections to the approximate expression
for Py in (6), are subleading, as we show in the Appen-
dix. The integration of Eq. (8) gives

6InN if 6=2,

aN*? if §<2, ©

N3(N) = {
which we juxtapose against simulations in Sec. III. We thus
see that the number of degree-3 nodes grows sublinearly
with N, and consequently their proportion in the thermody-
namic limit is infinitesimal. We also note that the solution in
Eq. (9) allows us to compactly rewrite Eq. (7) as

Py~ e VW, (10)
The obvious generalization of (8) for higher degrees is

dN, N

) 11
dN  N° (1)

A recursive solution yields connectivity transitions quite
similar to those in the m=1 case (2),

NED=9 ifd <k <p+1,
Ny/N ~ (12)

1/N otherwise,

for any o such that 6,<6<9,_,, where 9,=1+1/p and p
=1,2,3,... . The only difference between the degree distri-
butions for the m=1 and 2 cases [Egs. (2) and (12)] is that
the latter is the former shifted along the k axis to the right by
1 [Eq. (12) is Eq. (2) with k—k—1]. Therefore, the same
infinite series of connectivity transitions appears for any
m=1, and the asymptotic degree distribution is given by

NN {Mk—'"><1-5> iftm<k<p+m-1,
N ~

1/N otherwise.

(13)

III. PREASYMPTOTIC REGIME

We have shown that all SLGNs are asymptotically open
books, while Zhou and Mondragén [6] showed that a specific
SLGN of a finite size exhibited clean power laws. Another
apparent disagreement is that according to our analysis,
N/ N—O for all k>m, while the PFP model simulations
show that N~ N for all k. The explanation of these para-
doxes lies in the fact that the PFP model has a vast preas-
ymptotic regime, and both the Internet size and sizes achiev-
able in simulations lie deep within this regime. In this
section, we describe two main factors that render this regime
extremely vast for the PFP-modeled Internet.

The first factor is that § in the PFP model exceeds 1 only
slightly (specifically, = 1.15 in [6]). For clarity, let us focus
on the following concrete example. The proportion of
degree-3 nodes N;/N in the m=2 case scales as N'~°, so that
if & is close enough to 1, then the deviation of N3(N) from
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FIG. 4. (Color online) Scaling of the proportion of degree-3 nodes N5/N in SLGNs with different & and m. The solid lines are the analytic
predictions for the leading term from [11] for m=1 and Eq. (9) for m=2. The dashed lines are simulations. The dotted line is 1/N.

the linear growth may be hard to observe for insufficiently
large N. Indeed, N=10* (the order of the Internet size) and
6=1.15 substituted in Eq. (9) yield N5/ N=0.98, contradict-
ing the assumption made to derive Eq. (9) that the network is
almost an open 2-book and hence N3/N<<1. This contradic-
tion means that we are very far from the asymptotic regime.
Even if we choose N=10'° (almost two autonomous systems
per person), the ratio N5/ N goes down only to 12%, so it is
still far from negligible. To get it down to 1%, we would
need N=10"7, nonachievable in simulations.

The second factor deepening the preasymptotic regime is
m>1. The larger m, the slower the decay of N;/N
~ N*=m(=9) for k> m, and the deeper the preasymptotic re-
gime. For example, using the results from [11] for N3(N) in
the m=1 case, we find that the Internet size N=10* and &
=1.15 yield N3/N=0.24, and to get it down to 1%, we
would need only N=10%, while N=10'" makes it 0.4%—all
the numbers are substantially lower than in the m=2 case.

We juxtapose these analytic estimates with simulations in
Figs. 4 and 5, showing the proportion of degree-3 nodes
N3/N and the overall degree distribution X;/=;N;/N in
SLGNSs of different size N, grown with different 6 and m. For

each combination of (N, §,m) we average the results over a
number of graph instances ranging from three for the largest
size N=10° to 100 for smaller N. We select the values of &
=(6,+6,.1)/2, 6,=1+1/p, p=1,...,7 (6=3 for p=1), so
that the selected & values lie within the connectivity transi-
tion intervals discussed above. For p=7, 6=1.15, i.e., the 6
value used in [6].

In Fig. 4 the cases with m=1 and 2 confirm the expected:
the larger o, the more quickly the proportion N;/N ap-
proaches our analytic prediction of its asymptotic scaling.
Comparing m=1 and 2, we see that in the former case only
for 6=1.15 does N3/N stay constant for all graph sizes N
achieved in our simulations, while in the latter case (m=2),
this ratio is constant for higher & values (8=1.23) as well.
We see that for small &’s, the scalings of N3/N are much
farther from their asymptotes in the m=2 case than in the
m=1 case. The m=3 plot confirms that N3/N quickly satu-
rates to a dependent constant that increases with &, while for
m=6, N3/N decays as expected, ~1/N, with the stronger
fluctuations, the smaller 6.

Two factors contribute to the discrepancies between the
analytic predictions and simulations in Fig. 4. First, we ne-
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FIG. 5. (Color online) Scaling of the degree distributions in SLGNs with different & and m. The lines show the complementary
cumulative distribution of node degrees (Z;/=;N;//N) measured in simulations.

glected loss terms in Eq. (9). Taking those into account
would yield, for m=2, the asymptotic expansion

N3(N)=aN* 2= bN*2 4 cN* 304 -+ (14)

where b and ¢ are some constants that depend on 8. For &
=1.15 this expansion turns into

N3(N)=aN0'85—bN0'7+cN0'55+ . (15)

explaining why keeping only the leading term in the
asymptotic result may lead to huge errors for small & and N.

The second discrepancy factor is that all the N,(N) ana-
Iytic estimates above are actually the average values of the
corresponding random quantities. Nothing is known about
fluctuations of the degree distribution, the analysis of which
is difficult even in the simpler case of linear preferential
attachment [14].

Figure 5 provides a more global view of the dependency
of the degree distribution on 6 and m. The higher &, the more

skewed the degree distribution and hence the more starlike
the graphs. For N=10°, =3, and m=1, all the graph in-
stances in our simulations are stars. The larger m, the closer
the degree distribution curves corresponding to different N
are to each other (neglecting the size-dependent cutoffs ex-
hibited by all graphs), the straighter these lines, and thus the
weaker the dependency of the degree distribution shape on
the network size, and the deeper the preasymptotic regime.

IV. RICH-CLUB CONNECTIVITY VERSUS JOINT
DEGREE DISTRIBUTION

We have shown in the previous section that the power
laws empirically observed in the PFP model do not contra-
dict the asymptotic open book structure of SLGNs, since
typical network sizes considered in simulations are preas-
ymptotically small. However, this argument does not explain
why the PFP model almost exactly reproduces not only the
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power-law degree distribution observed in the real Internet,
but also a long list of other important network properties.
Since the preasymptotic regime is not amenable to straight-
forward analytic treatment, in this section we approach the
problem from a different angle, and provide a simple expla-
nation based mostly on previous empirical work.

We first notice that the fact that the PFP model exhibits
preasymptotic power-law behavior is not very surprising, be-
cause for 6=1 the model produces asymptotic power laws,
and this asymptote is quickly achieved for small N. The re-
sults of the previous section indicate that if 621 and m>1
then this power-law asymptotic behavior unnoticeably
changes to preasymptotic, slowly transforming into the new
asymptotic behavior only for very large N.

Yet this argument does not explain why the PFP model
reproduces so many other network properties observed in the
Internet. Previous work [3,4,15-17] shows that the degree
distribution alone does not fully define all other Internet
properties, i.e., the Internet is not 1K-random in the termi-
nology of [3], but is almost 2K-random—its structure is very
close to the structure of maximally random graphs con-
strained by its two-point degree correlations, or the joint de-
gree distribution (JDD) defined by the total number Ny, of
links between degree-k and degree-k’ nodes. In other words,
the Internet’s JDD narrowly defines almost all its other im-
portant properties, except clustering [3,4].

Although the PFP model is not concerned with the JDD
per se, it reproduces precisely the observed rich-club connec-
tivity (RCC) ¢(r/N) defined as the ratio of the number of
links in the subgraph induced by the r highest-degree nodes
to the maximal number of such links (3). The values of
o(r/N) observed in the Internet for small r are substantially
higher than in networks grown according to linear preferen-
tial attachment. Superlinear preference increases the connec-
tivity density among high-degree nodes, which explains why
the PFP model successfully captures the observed RCC.

In the rest of this section we analyze the relationship be-
tween the JDD and RCC. Specifically, the JDD almost fully
defines RCC: any two graphs with the same JDD have al-
most the same RCC. While the converse is generally not
true, a given form of RCC introduces certain constraints to
the JDD. Given the JDD’s definitive role for the Internet
topology, we conclude that reproducing Internet’s RCC must
significantly improve the accuracy in capturing all other
properties of the Internet topology that depend on degree
correlations, which explains the success of the PFP model
and provides clear grounds for the discussion in [18,19].

To see that the JDD almost fully defines RCC is straight-
forward [20]. We first get rid of the node rank r in ¢(r/N).
The rank of a node is its position in the degree sequence
sorted in decreasing order, i.e., as in (3). Recall that the node
rank is essentially the complementary cumulative distribu-
tion function for node degrees: if d; and r; are the degree and
rank of node i, k., is the maximum degree, and if we denote
N{=3imN,,, then 1+Ng ,;<r;<N;. Thus, the DD and

RCC are directly related via ¢, defined as the total number
of links between degree-k nodes and nodes i of higher de-
grees d; =k,
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N; N, Fmax
o= <2)<P(N+/N) ( 5 ) Nii/N) = ENkk’

(16)

It follows that the JDD defines RCC, up to reordering of
nodes of the same degree.

To illustrate how the RCC constrains JDD, we choose to
consider a common projection of the JDD, the average de-

gree of the nearest neighbors of degree-k nodes kyy(k). We
first look at the maximum and minimum possible value of

knn(k) for a class of graphs with some fixed degree distribu-
tion with minimum and maximum degrees of 1 and k,,,. We
then suppose that ¢, is also given as a constraint, and we
quantify how this constraint narrows down the spectrum of
possible values of kyy(k).

It is easy to see that the minimum and maximum values of
knn(k) without the ¢, constraints are simply 1 and k,,,, if we
neglect any structural constraints that a given form of the
degree distribution imposes on possible JDDs. For example,
if Ny > Ky, then knn(1) cannot be ki, it is necessarily
less than k.. Scale-free networks with y<<3 have these
constraints for links connecting nodes of degrees k and k’
such that kk’ >kN [21]. To formally see that without such
constraints the minimum and maximum of kyy(k) are 1 and
Kmaxs 1€t =1+ be the factor taking care of links be-
tween nodes of the same degree in M s = iy, Ny, SO that the

total number M, of “edge ends” (stubs) attached to degree-k
nodes is M;=kN, =2, M. We then have, by definition,

1
_E k’Mkk" (17)
k k’

];NN(k) =

{The more common definition for the normalized dis-
tributions P(k)=N,/N and P(k,k')=M./(kN) such that
S P(k)=2 Pk, k') =1 is lean (k) ==/ k" P(k' | k)
=[k/(kP(k))]Z k' P(k' ,k).} The minimum (maximum) val-
ues of kyy(k) are achieved when all degree-k nodes are at-

tached only to the nodes with the minimum (maximum) de-
grees,

kmm(k) mln(E k' Mkk’ |2 Mkk’ = Mk) 1
k r r

few (k) = ﬁ max(z k' My
k

EMkk’ _Mk) kmax’
k' k'

where the minimum (maximum) is taken over all possible
JDD matrices My, yielding the given degree distribution M.
We thus see that the maximum difference between possible

values of kyy(k) is

AK) = e (k) = KR () = Ko = 1. (18)

In the Internet the maximum node degree is large (it scales as
koax ~ N1 [21]), and hence A(k) = k.
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Suppose now that ¢k=2i‘,“;‘2Mkkr=qok+Nkk is given as a
constraint. Note that ¢, is not precisely equal to ¢, but we
neglect this extra Ny term here as well, partly because in the
Internet Ny, is relatively small for almost all k. Introducing
the ratio a;= ¢,/ M,, which is approximately the ratio of the
number of links connecting degree-k nodes and nodes of
higher degrees to the number of all links attached to degree-k

nodes, we write the new minimum value of k,,(k) as

k-1 k-1

_ 1| ,

k(kla) = —| min| 2 k'Myo| 2 Mo =M~ ¢,
M, K'=1 K'=1

kmﬂx kmax
+ min( 2K M| 2 My = ¢k>

k' =k k' =k

1
=ﬁ[1 X (M=) +kdy]= (k=D + 1,
k
(19)

where the minimum is now taken over all JDDs My, satis-
fying the RCC constraints. Similarly, for the maximum pos-
sible value, we have

— . 1
kIIIIlIiIx(k|ak) = ﬁ[(k - 1)(Mk - ¢k) + kmax¢k]
k
=(kpax —k+ Dag+k—1, (20)

and the maximum possible difference is

A(k|ay) = kS (k| ) — kR (k| o) = (kypay = 2k +2) e + k= 2.
(1)

Compared to the unconstrained case, the relative decrease
of the range of possible values of ,,,(k), assuming large k.

1S
S-S (k) () k)
A(k) kmax “

Kinax
1 = klkypy if @z =0,
~112 if ap =~ 1/2, (22)
Kkpy  if ag=~1.

In disassortative networks, such as the Internet [17], most
links incident to medium- and high-degree nodes lead to
low-degree nodes, meaning that a;=0 except for k/ky.
< 1. Given (22), we conclude that the RCC introduces sig-
nificant constraints to the JDD, reflected even in a JDD’s

simple summary statistic kan(k), except for the lowest de-
grees k=0, and perhaps the highest degrees k=k,,,, for
which our analysis may not be very accurate since we ne-
glected the structural constraints that are relevant in the high-
degree zone. We confirm this conclusion in Fig. 6 where we
use the RCC in the measured Internet topology to compute
the RCC-induced relative decrease 1—A(k|ay)/A(k) of the

range of possible values of kny(k). In the medium-degree
zone this decrease reaches 80%.
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0.8f

0.6f

0.4}

1-A(Klot, /A(K)

0.2r

FIG. 6. Relative decrease of the range of possible values of

knn(k) imposed by the Internet’s RCC. The Internet map from [17]
is used to compute A(k) and A(k|ay) given by Egs. (18) and (21).

V. CONCLUSION

Preferential attachment is a robust mechanism that may be
responsible for the emergence of the power-law degree dis-
tributions in some complex networks [5]. However, power
laws emerge only if the preference kernel is a linear function
of node degree [10,11]. If one believes that preferential at-
tachment is a driving force, explicit or implicit, behind the
evolution of complex networks, then the natural question one
has to face is why this kernel must be exactly linear in so
many very different complex systems.

In this paper we argue that, even if the preference kernel
is not linear but slightly superlinear, preferential attachment
may still produce scale-free networks, except that it does so
not in the asymptotic but in a vast preasymptotic regime.
Two key factors contribute to the depth of this regime: (1)
how close the preference kernel is to being linear, and (2)
how many links are added per new node. These factors allow
us to say, informally, that multiple links added under slightly
superlinear preferential attachment resurrect power laws, al-
though only by means of deepening the preasymptotic re-
gime.

The asymptotic regime is still degenerate: adding m links
leads to the asymptotic degree distribution P(k) — & ,,,. More
precisely, the asymptotic network structure is a distorted (or
“torn”) open m-book—a generalization of a known object in
topology [13]. The level of distortion depends on how close
the preference kernel is to a linear function. Similarly to the
m=1 case (the open 1-book is a star), we find an infinite
series of connectivity transitions characterizing the degree of
damage to the open book structure, as the kernel approaches
a linear function.

To explain the success of one particular superlinear
model—the positive-feedback preference model [6]—in cap-
turing not only the degree distribution but also many other
important properties of one particular complex network, the
Internet, we analyze the both-way relationship between the
joint degree distribution (two-point degree correlations) and
rich-club connectivity. The former defines the latter, while
the latter constrains the former. These constraints, captured
by the model, suffice to reproduce many other important In-
ternet properties, since it has been shown that most of them,
except clustering, depend only on the joint degree distribu-
tion [3,4].
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Given that the depth of the preasymptotic regime in-
creases with the number m of links added per node, and that

the average degrees k~2m of some complex networks in-
cluding the Internet have been reported to grow with network
size [22-24], our findings, taken altogether, imply that some
complex networks may exist in vast preasymptotic regimes
of evolution processes that have degenerate network forma-
tions as their asymptotes. We contrast this implication with
the observation that the vast majority of the existing network
evolution models are designed with the goal of yielding
asymptotic power-law distributions, quickly achievable at
small network sizes.

An interesting open question is whether the dynamics of
the world economy supports our findings. Specifically, does
the superlinear growth of wealth contribute to such effects as
the “shrinking middle class” [25,26] and growing wealth in-
equality [27,28]? More succinctly, is the Pareto distribution
preasymptotic [23,29]?
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APPENDIX: NONEXTREMAL GROWTH

The network remains an open book throughout its evolu-
tion with probability

j=2

where P;_,;,; is the probability of attaching the new node to
the two nodes of highest degree

P = (G-D%-2°
T G104 (j-2)04 (j-3) X 29+ 1

and we used the shorthand notation

0;.

1 1
T =2+ (-3) X2+ 1 (-1)°+(-3) x 2%+ 1’

When 6>2, the probability of remaining an open book is
finite, although it vanishes very rapidly when & approaches 2

from above:
-5%)
P.~expl————= -

Q;

52 (A2)
When 6=<2, the exact open book structure will be certainly
destroyed at some moment. A sufficiently large network is
thus not an open book exactly, yet the deviation from this
structure is rather small. Consider for concreteness the range
3/2<6<2 where the number of degree-3 nodes keeps
growing while the number of nodes of degrees =4 remains
finite. The degree sequence reads
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(k1.k,3, ...
(A3)

where k; and k, are the highest degrees, and where we have
not displayed a finite number of other nodes whose degrees
are different from 2 and 3. The two highest degrees k; and k,
are slightly smaller than N. To determine k; and k, we first
recall that the sum of all degrees is twice the total number of
links,

N
> kj=2L. (A4)
j=1

Since L=2N-4 when m=2 and the initial sequence is
(2,1,1), we use (A3) and rewrite (A4) as

kl+k2+3N3+2(N—N3):4N+ 0(1), (AS)

from which k;+k,=2N—N;+0O(1). Combining this relation
with inequalities k; <N and k, <N, we obtain

k1=N—pN3, k2=N—(l—p)N3. (A6)

We now argue that p=1/2. Indeed, in the leading order the
difference k;—k, evolves according to the rate equation

KO—kSN X 20 5% 25!
2N°  N° T N°

d
d_N(kl - kz) = (k1 - k2)~

(A7)

This suggests that k;—k, remains finite and therefore sup-
ports (A6) with p=1/2. While the latter assertion is correct,
Eq. (A7) just shows that bias in favor of the node of the
highest degree k; over the second highest degree k, is too
small. However, there remain pure stochastic fluctuations,
and the difference k;—k, is therefore a random variable of
the order of \«"E. Thus

1
ki=N-_Ny. ki~k= O(N3). (A8)

Let us now compute N;. In the leading order we have

dNs
E =1-Pryonss (A9)
where for Py._y.; we should ignore O(Ns) corrections,
N°+N° N°
Ppesne1 = (A10)

NP+ NP+ N X 29N+ N x 2%

Plugging (A10) and (A9) and keeping only the leading con-
tribution, we get

51
N _ 3<3> , (A11)
dN N
which leads to Ny=aN>~? from (9).
To extract the subleading term, both (A9) and (A10)
should be modified. To modify Py_y.; we use (A3) and
(A8) and get a more accurate formula for
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2(N - Ny2)°
2(N = N3/2)°+ (N —N3)2°+ Ny X 3°
» (N - Ny2)°
(N =N3/2)°+ (N —=N3) X 2%+ Ny X 3%

PN>—>N+] =

The modification of (A9) is

Ny _p 3N—3X35 (A12)
dN - N—N+1 N5 ’

where the last term on the right-hand side assures that when-
ever the new node links to a node of degree 3, we have a loss
rather than gain. After lengthy calculations one gets

aN*%+0(1) if3/2<68<2,

Al3
aN*°—pN>72% if §< 3/2. (A13)

N3(N) = {
Strictly speaking, in writing Py_y. We assumed that &
>3/2. However, a more detailed analysis shows that the
nodes of degree 4 do not influence the subleading correction
b N3_25.

When 4/3<6<<3/2, the nodes of degree 4 become vis-
ible, and the network degree sequence becomes

(ky,ky,4, ...,4,3,....,3,2,...,2).
Fo ey or s 00ln 2 s
Ny N3 N-N3-N4 (A14)
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A straightforward generalization of our previous argument
gives
1 —
k1=N—EN3—N4, ki —k,=0(WN;).  (AlS5)

In the leading order, the quantity N, evolves according to

dN; N3Xx3%° Nyx3°
Ny _ +

dN ~ 2N° N (A16)
from which
3% 4
N,N)=a,N*2%, a,= i (A17)
Proceeding in the same way, we obtain for any k=2
leading to the asymptotic
Niw(N) = @ NED2 (A19)
with amplitudes
3\k-2 K j?
iy = a(5> g ]_(]—_1)5 (A20)
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